If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-13x-44=0
a = 1; b = -13; c = -44;
Δ = b2-4ac
Δ = -132-4·1·(-44)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{345}}{2*1}=\frac{13-\sqrt{345}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{345}}{2*1}=\frac{13+\sqrt{345}}{2} $
| 25-6y=5 | | 3x-2(1-2(x+4))=5x | | p-17=2p+3 | | 5x+3(2x-13)=16 | | 23/4+12/3=o | | 0=4x^2+15x−25 | | f-6=3f+3(f-2) | | 4x2+15x−25=0 | | 28=-7p | | (2x-3)/6=(3x+1)/2 | | 2x-3/6=3x+1/2 | | -30=5(p–1) | | 18h-13h=15h | | -3q+9q=48 | | 3y=y+28 | | 4/5q=32 | | 4x+6=7x-20 | | 2x10=24 | | x+x*0.08=58.5 | | X^3-x+12=12 | | 3x+7=6x-15 | | 3x+7=8x-15 | | 1200=p(1+0.01575)^(20) | | 3z-1=z+23 | | 1x-0.6x=384 | | 13+(4-x)=16 | | 236=26-y | | √4x-20-√x-5=-4 | | -2-13.8x=-8x=(6x+1) | | 6x=85-4+2-1 | | 2.569x=12.48534 | | 0=-t^2+19.4t+12 |